

Center for Innovative Photonic Chip-scale Technologies:

Systems-on-a-Chip Research

Mike Haney, George Mason University
Fairfax, VA, USA 22030-4444
mhaney@gmu.edu

University Opto Centers Kickoff Meeting November 9, 2000, Dana Point, CA

Motivation

- Si technology is moving toward billions of devices/chip with multi-Gbit/s rates → SOC.
- Fundamental interconnect problems will scale down to intra-chip level \rightarrow can optics help?
- Opportunity to influence SOC development at early phase.
- OE technology rapidly advancing → it's not too soon to think about applications.

Limits of Point-to-Point Global FSOI Single Hop Fabrics

- $D_{max} \cong \delta^2/4\lambda$
- $A_c \cong D_{max}^2$
- Density_{I/O} = $1/\delta^2 \cong 1/4(\lambda(A_c)^{1/2})$
- $I/O_{max} \cong (A_c)^{1/2}/4\lambda$ e.g., $I/O_{max} \cong 8000$ for $A_c=10$ cm²

Scaling Photonics Technologies for SOC Applications

Raytrace -> Diffraction theory based tools

 μ -optics \rightarrow meso-optics \rightarrow

VCSELs → Quantum dots

Waveguides → PBG structures

2-D PBG → 3-D PBG

Approach

- Determine problem domains that can leverage high-density SOC architectures.
- Scale architectural solutions to the chip level and quantify the benefits.
- Determine key areas for study -- provide input to technology efforts.
- Leverage technology developments and projections into architectural concepts.
- Perform end-to-end performance analyses.

Projects

1. Application Mapping based on Optical Interconnections for SOC

2. Electronic/Photonic Integration

Application Mapping for Embedded Multiprocessors

- computing systems that perform well defined functions
- usually "reactive" in nature (e.g. radar, mobile communications)

- Selection of architecture template
- Allocation of template resources
- Assignment of tasks to processors
- Ordering of tasks on processors
- •Optimization of interprocessor communication and synchronization

Requires efficient techniques for <u>performance</u> estimation and <u>design space</u> exploration

Performance Estimation for Multiprocessor DSP

Key Complication:

Continuous operation on vast data streams

(four-channel multi-resolution QMF filter bank)

Becomes increasingly accurate as communication cost and contention are reduced

Baseline Photonic Integration Technologies

VCSELs integrated with SOI

DOE array

VCSEL Driver

Beam Fan-Out

Electromagnetic Design and Fabrication of 3-D Mesoscopic Diffractive Optical Elements

- (a) Surface profile of a multilevel 1-to-2 fanout mesoscopic DOE
- (b) Experimental reconstruction of the meso-DOE at the design focal length of 500µm
- (c) Fresnel lens of 128 µm square for a focal length of 1mm (3D-AFM image)

1D and 2D Photonic Bandgap Guides/Microcavities

Airbridge PRG microcavity: GaAs surrounded by air

Monorail PBG GaAs-on- Al_xO_y

Coupling from normal dielectric waveguide into a photonic crystal waveguide

Photonic Interconnects for SOC

"Application Specific" "Chip Area Network" Network

- Customized interconnection fabric.

"Place and Route"

 Generic fabric for wide class of interconnect-bound applications.

"Route and Place"

Photonic SOC Architectures

"Fire-hose"
Architectures
High Aggregate BW

"Fountain"
Architectures
High Min. Bisection BW

Photonic SOC Research Issues

- Application mapping and performance estimation tools.
- Interconnection architecture analysis and implementation.
- Diffractive optical element design and fabrication.
- Active/passive alignment, integration, packaging.
- 2-D/3-D interface.
- Transceiver power management and related thermal issues.
- Throughput/Crosstalk analysis and measurement.

Summary

Overall Goal:

➤ Provide linkage between integrated photonic technologies and applications....

....in order to push OE interconnect architectures and algorithms into the chipscale domain.